

INRAO

> Efficiency of ruminant organic farming systems

Specialised grass systems perform better than mixed crop-livestock

<u>Veysset P.</u>, Gautier M., Grenier J.

INRAE, UMR Herbivores, 63122 St Genès-Champanelle, France
patrick.veysset@inrae.fr

> Context, objective

BioRéférence project

Context

- The BioRéférence project (2015-2020) aims to produce structural, technical and economic references for organic ruminant livestock farms in the French Massif Central
- French massif Central: a mountainous, grassland area accounting for more than 30% of the French organic certified ruminants
- Professional stakeholders express a strong need for references to accompany organic farmers towards more efficient systems

Objectives

- Evaluate and measure the efficiency of a ruminant farming system: indicator
- Identify the determinants of this efficiency indicator

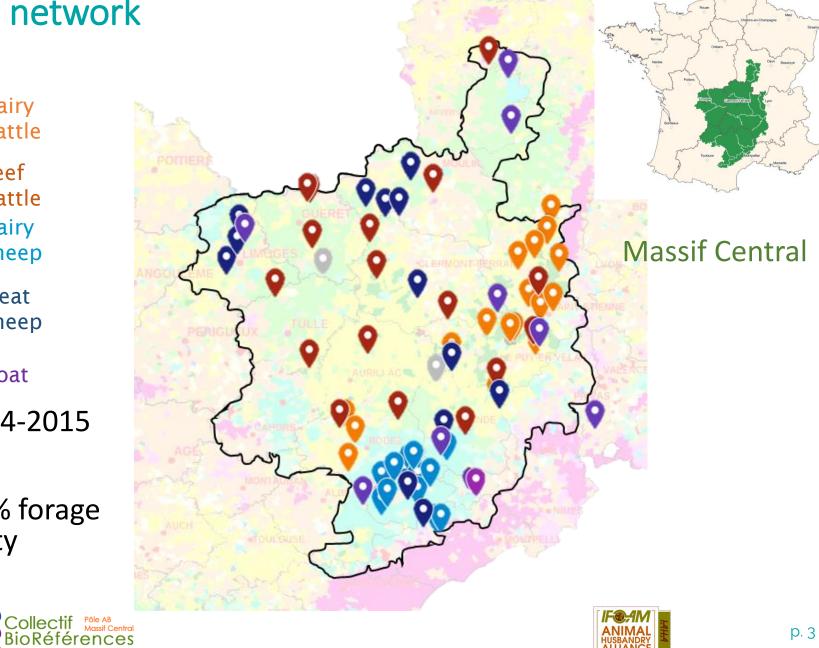
> The livestock farms' network

• 70 farms

Dairy 20 Cattle

Accès base de données ■Editions **∢Valorisation ∢Paramètres** ◆Boîtes à outils

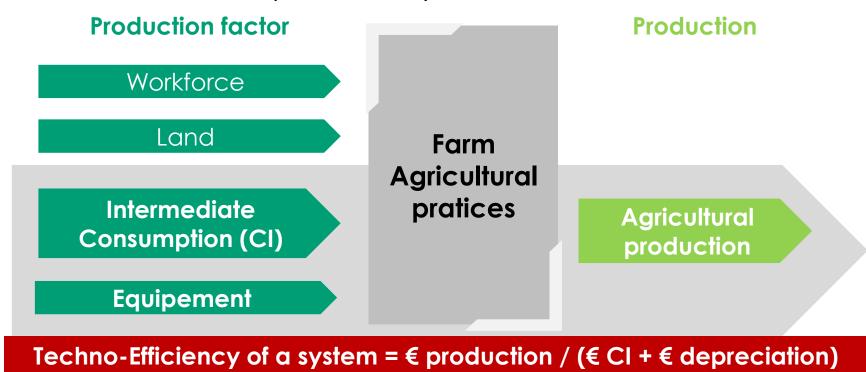
Beef 16 Cattle


Dairy 12 Sheep

Meat 13 Sheep

Goat

- 140 observations
- 120 ha 77 LUs 86% forage area – Hudge diversity


> Method: techno-economic efficiency

Efficiency = output/input

Efficient system: produce a lot with little, or produce little with nothing!

Factors productivity

 Measures the amount of factors of production used per unit of output. This definition can be connected to the concept of efficiency.

> Method: data analysis & efficieency determinants

Link between the variability of structures, systems, practices and techno-economic efficiency

Principal Component Analysis (PCA)

• 18 structural variables (labour, area, capital...)

43 Active - 20 system organisation variables (intensification, diversification, crop destination...)

• 5 technical variables (feed self-sufficiency, animal productivity...)

• 3 economic variables (gross farm income/GO, added-value/GO, farm income/worker)

• 5 partial productivity variables (labour, land, i.ter. cons., equipment, techno-eco. efficiency)

All data have been standardised by production and year, and individuals have been weighted by the production system to establish an equivalent weight for each production

Hierarchical Cluster Analysis (HCA)

Typology of farms

Partial Least Squares (PLS) regression

- Dependent variable: techno-economic efficiency
- Explanatory variables: structural, system organization and technical variables used for the PCA

8

Additionnal

> Results: Farms variability

Principal Component Analysis (PCA)

Specialised grassland farms

- . Area dedicated to feed the herd
- . Specialisation
- . % permanent pastures

AXIS 1 (19.3%)

AXIS 2 (12.4%)

- . Crops area, ha & % UAA
- . UAA, LUs, capital (size)
- . Diversification, number of crops

Large mixed crop-livestock farms

Feed self-sufficient, intensive per ha farms

- . Crops diversification
- . Concentrate self-sufficiency
- . Intermediate consumption €/ha

. LUs/Worker

- . Ha UAA/Worker
- . UAA, MFA, LUs (size)
- . MFA & permanent pastures % UAA

Large grassland farms, labour productivity

AXIS 3 (10.9%)

Large, self-sufficient and thrifty farms

- . Feed self-sufficiency . Size (UAA, MSA)
- Techno-economic efficiency Added-value/Gross product

- . Intermediate consumption €/ha
- . Capital €/ha
- . Stocking rate, concentrate kg/LUs
- . LUs/worker

Intensive farms, Labour productivity

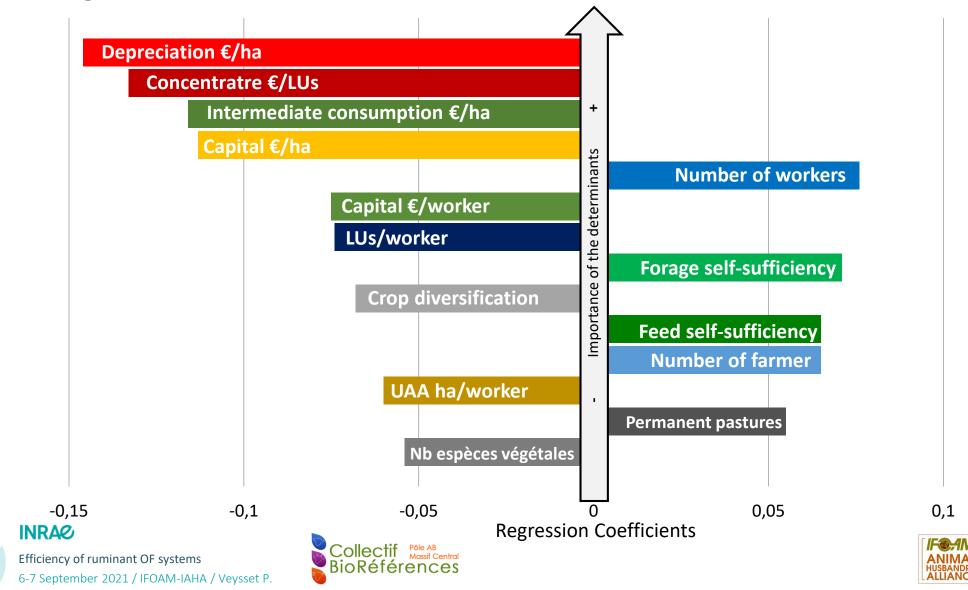
INRAE

Efficiency of ruminant OF systems
6-7 September 2021 / IFOAM-IAHA / Veysset P.

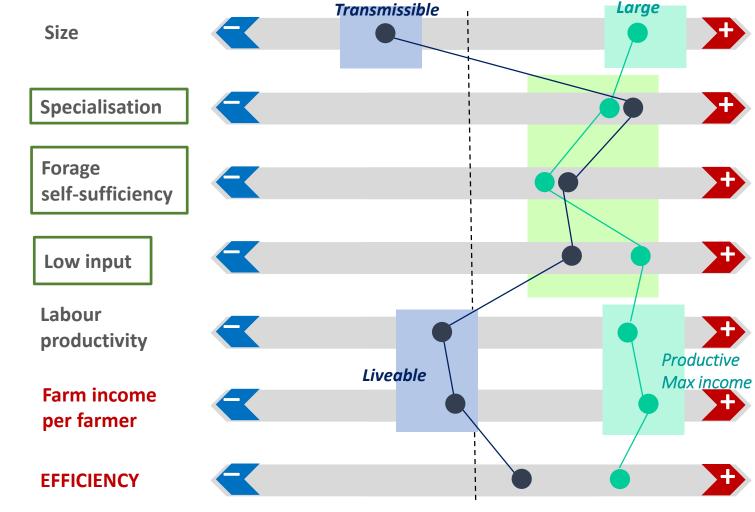
> Results: Farms typology

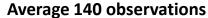
Hierarchical Cluster Analysis (HCA) – 6 groups of farms, 4 presented

All productions are present in each type	70 farms x2 years (n=140)	Small thrifty with workforce	Intensive Hight labour productivity	Large specialised grass-based self-sufficient	Large mixed crop-livestock Labour productivity
Number of workers (AWU)	2.1	2.0	1.6	2.4	2.6
Usable Agricultural Area, UAA (ha)	89	57	76	142	145
Main Fodder Area (% UAA)	88	84	84	95	79
Stocking Rate (LUs/MFA)	1.03	1.09	1.08	1.04	0.95
UAA ha/AWU	46	31	50	61	61
Intermediate Consumption €/ha	1160	1150	1600	840	890
Concentrate self-sufficiency (%)	45	59	23	23	74
Feed self-sufficiency (%)	87	92	77	85	90
Added-Value/Gross product (%)	30	29	23	41	23
Farm Income per Worker (k€/AWU)	29.0	24.3	24.0	41.8	29.3
Techno-economic Efficiency	1.57	1.60	1.26	2.14	1.52



> Results: determinants of the efficiency


PLS regression coefficients



➤ Results: typology * determinants → 2 efficient profiles

Large specialised grass-based self-sufficient

Small thrifty with workforce

Discussion

Determinants of the ruminant systems' techno-economic efficiency

- The productive specialisation, grass-based systems, the feed self-sufficiency and input savings are positive determinants of the systems' techno-economic efficiency.
- Intensification of agricultural land, animal productivity through concentrates are negative determinants of efficiency
- Farm size and labor productivity affect efficiency but positively or negatively depending on the combination of other factors

Crop diversification and size

- Crop diversification and mixed farming seem to limit the techno-economic efficiency
- → A large grassland specialised farm can be very efficient, while a similarly sized farm in a mixed system has some probability of being less efficient
- Smaller farms seeking to increase production by intensifying see their efficiency degraded

Conclusion

- Mixed crop-livestock farming is generally seen as a system enabling the construction of eco-efficient production systems.
- Diversification often entails enlarging farms. Purchased feed and equipment are the key factors that often increase with enlargement
- Farmers' choices in terms of work organisation, equipment investment on these large, diversified farms should be studied to objectively assess the trade-offs made and their impact on the sustainability of the systems.

> Thank You

RECION BOURGOGNE FRANCHE COMTE

